INTRODUCTION
Human beings are often exposed to microorganisms in the living environment and are prone to infection. Antibiotics are the most commonly prescribed medications in modern medicine which cure disease by killing or damaging bacteria. The determinations of the activity of these antibiotics are crucial to the successful outcome of antimicrobial therapy. The resurgence of antibiotics is playing a significant role in the emergence of resistant bacteria.

Silver has been effectively used as an antimicrobial agent for centuries; the recent progression in interest for this element particularly focuses on the increasing threat of antibiotic resistance, caused by the abuse of antibiotics (Panacek et al., 2006; Sambhy et al., 2006). Intensified research in antibacterial material of various natural and inorganic substances has been found to be exquisite (Kim et al., 1998; Cho et al., 2005). The desired application of the material is attained by its peculiar property when the dimension of a material is reduced to the atomic level (Burrell et al., 1999; Gleiter et al., 2000). The development of nanoscale techniques for silver production may assist the resurgence of the medical use of silver, especially in applications to eliminate pathogens (Chio et al., 2005).

SHORT COMMUNICATION
Evaluation of antimicrobial efficacy of nano coated silver-titania metallic plates against selective pathogens

Siti Mariam Binti Mohamad. 1, Rohini Karunakaran. 2 *, Abd. Kadir Masrom. 1, Mohd. Zakuan Abdullah. 1 and Jeyakumar Nelson. 2

1Industrial Nanotechnology research Center, SIRIM Berhad Kulim Hi-Tech Park, Malaysia.
2Unit of Biochemistry, Faculty of Medicine, AIMST University, Malaysia.
3Unit of Microbiology, Faculty of Medicine, AIMST University, Malaysia

E-mail: rohinik23@gmail.com

Received 4 August 2011; received in revised form 27 October 2011; accepted 6 December 2011

ABSTRACT

Aim: Nanotechnology is an increasingly growing field with its current application in Science and Technology for the purpose of manufacture of novel materials at the nanoscale level. Silver-Titania nanoparticles (AgTiO2-NPs) have been known to have inhibitory and bactericidal effects.

Methodology and Results: In the present study, stable silver-titania nanoparticles coated metallic blocks were prepared for testing their efficacy against selected bacterial pathogens like Escherichia coli and Staphylococcus aureus. In the experimental part, the bacterial pathogens were inoculated on silver-titania nanoparticle coated blocks and the treatment was carried out in '0' time and '24' h interval and were enumerated.

Conclusion, significance and impact of study: The results were compared with the control (uncoated metallic blocks) and analyzed by using Japanese Industrial Standard (JIS Z2801:2000) method. From this study, it was concluded that silver-titania nanoparticles has inhibitory effect on bacterial pathogen tested.

Keywords: Silver-Titania nanoparticle, Escherichia coli, Staphylococcus aureus, JIS

MATERIALS AND METHODS

Preparation of silver-titania coated metallic blocks

The silver-titania coating was carried out using Praxair plasma spray system with SG100 torch (USA). The feedstock powder, silver-titania nanocomposite was

*Corresponding author
prepared by spray drying. The silver content was varied from 1 % - 5 %. The feedstock material was carried into the torch by carrier gas (Argon). The plasma spray coating was carried out by injecting the feedstock material (silver-titania nanocomposite powder) into the hot plasma stream where the particles were heated and accelerated at high velocity, and impacted on to the metallic substrate. The melted particles were rapidly solidified, flattened and formed splats. The silver-titania coating was formed by the build-ups of these splats. The plasma spraying parameter is listed (Table 1). The produced silver-titania coated samples identification was listed (Table 2).

Table 1: Plasma spray parameters used to produce the silver-titania coatings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma spray power</td>
<td>12 kW</td>
</tr>
<tr>
<td>Primary gas (Ar)</td>
<td>80 psi</td>
</tr>
<tr>
<td>Secondary gas (He)</td>
<td>50 psi</td>
</tr>
<tr>
<td>Carrier gas (Ar)</td>
<td>30 psi</td>
</tr>
<tr>
<td>Spraying distance</td>
<td>80 mm</td>
</tr>
<tr>
<td>Powder feed rate</td>
<td>2 rpm</td>
</tr>
</tbody>
</table>

Table 2: Labeling and identification of coated samples

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Sample ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver (1 %)-titania</td>
<td>ST1</td>
</tr>
<tr>
<td>Silver (3 %)-titania</td>
<td>ST3</td>
</tr>
<tr>
<td>Silver (5 %)-titania</td>
<td>ST5</td>
</tr>
</tbody>
</table>

Study on antimicrobial activity of nano particle

Sample size and Test Organism

In this study, a total number of three samples at different concentrations of test samples and control samples (without coating) were prepared and tested against selective bacterial pathogens viz. *Escherichia coli* and *Staphylococcus aureus*.

Experimental Set Up

In this investigation, each test piece was placed separately in a sterilized Petri dish with the coated side facing upwards for inoculation. Each test piece was instilled with about 0.4 mL of the inoculum viz. *E. coli* or *S. aureus* (2.5 × 10⁸ - 1.0 × 10⁹ cells/mL) and covered with a square polyethylene film of 40 mm ± 2 mm, to help the inoculum to spread evenly over the test piece. The petri dishes with the coated and uncoated test pieces were incubated at 37 °C ± 1 °C for 24 h ± 1 h. For the '0' h test pieces, after the standard procedure described, the covering film was removed immediately, and washed with 10 mL of the SCDLP broth.

Enumeration of Test Organism

The count of viable cells of bacteria was proceeded immediately in the washings by serial dilution method. About 1.0 mL of each of the washings from each dilution was dispensed into sterilized nutrient agar and incubated them at 37 °C ± 1 °C for 24 h to 48 h. For the test piece after 24 h incubation, the test bacteria was washed out in a similar manner as done in '0' time treatment and the serial dilution procedure was carried out to count viable cells of bacteria in the washings as in the previous step. After incubation, the number of colonies (30 to 300 colonies/plate) from each serially diluted Petri dish was counted and calculated according to the formula. The efficacy of antimicrobial products was judged from the value of antimicrobial activity according to the JIS standards. The value of antimicrobial activity obtained by the testing methods of this standard shall not be less than 2.0 for testing the antimicrobial efficacy of antimicrobial products (JIS Z 2801:2000).

Antimicrobial efficacy of silver-titania nanoparticle

When the test has been effective, calculate the value of antimicrobial activity according to the formula given below and the values were recorded.

\[
R = \log \left(\frac{B}{A} \right) - \log \left(\frac{C}{A} \right) = \log \left(\frac{B}{C} \right)
\]

Where,

- \(A \) = average of the number of viable cells of bacteria immediately after inoculation on the untreated test piece
- \(B \) = average of the number of viable cells of bacteria on the untreated test piece after 24 h
- \(C \) = average of the number of viable cells of bacteria on the antimicrobial test piece after 24 h

The antimicrobial efficiency was measured as the percentage reduction using the numbers of initial and surviving bacteria on the test samples based on the sample, using the following formula:

\[
\text{Antimicrobial efficiency (\%)} = \frac{A - C}{A} \times 100
\]

Where, ‘C’ and ‘A’ are the numbers of surviving bacteria (cells/mL) for the samples incubated for 24 h and 0 h, respectively and the results were presented in Table 3 (Jung et al., 2009).

RESULTS

The feedstock material used in this study was prepared using different concentration of silver-titania nanoparticles. The samples include 3 different concentrations viz. ST1, ST3 and ST5 were prepared (Table 1 and 2) and the treatment was carried out of 3 samples in each set for "0" h and "24" h in *E. coli* and *S. aureus* respectively and the viable bacterial cells (Table 3) were analysed by JIS method.
Table 3: Antimicrobial Efficacy against *Staphylococcus aureus*

<table>
<thead>
<tr>
<th>Batch No.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>R Value (log B / C)</th>
<th>Antimicrobial Efficacy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1</td>
<td>35 x 10^3</td>
<td>43 x 10^5</td>
<td>32 x 10^2</td>
<td>4.12</td>
<td>99.08</td>
</tr>
<tr>
<td>ST3</td>
<td>38 x 10^2</td>
<td>75 x 10^4</td>
<td>36 x 10^1</td>
<td>3.32</td>
<td>99.99</td>
</tr>
<tr>
<td>ST5</td>
<td>75 x 10^4</td>
<td>133 x 10^4</td>
<td>55 x 10^2</td>
<td>2.38</td>
<td>99.27</td>
</tr>
</tbody>
</table>

The value of the antimicrobial activity according to the formula:

\[R = \log \left(\frac{B}{A} \right) - \log \left(\frac{C}{A} \right) = \log \left(\frac{B}{C} \right) \]

DISCUSSION

The results showed that the growth of *E. coli* was completely inhibited (absolute efficiency) in all the concentrations tested, whereas in *S. aureus* the antimicrobial activity was above the range of 2 in all the samples tested and the antimicrobial efficacy (%) lies between 99.08 % (ST1) to 99.99 % (ST3). Earlier studies proved that silver nanoparticles have known to exhibit inhibitory and bactericidal effects. It is generally recognized that silver nanoparticles may attach to the cell wall, thus disturbing cell-wall permeability and cellular respiration. The nanoparticles may also penetrate inside the cell by interacting with phosphorus and sulfur-containing compounds such as DNA and protein and thereby causing damage (Castellano et al., 2007). Sambhy et al. (2006) suggested a possible contribution to the bactericidal activity of silver nanoparticles is the release of silver ions from particles. Yoksan and Chirachanchai (2010) studied the antimicrobial activity of silver nanoparticles in polysaccharide-based films against *E. coli* and *S. aureus*, as model Gram-negative and Gram-positive bacteria, respectively, by an agar diffusion method. Kim et al. (2007) results suggest that the antimicrobial effect of Ag nanoparticles may be associated with characteristics of certain bacterial species and substantiated that the Ag nanoparticles tested in *E. coli* showed effective growth inhibition than *S. aureus*. Gram positive and Gram negative bacteria exhibit heraldrly in their membrane structures, the most distinctive of which is the thickness of the peptidoglycan layer.

Maness et al. (1999) demonstrated that TiO₂ materials have effective role against the microbial agents and have been successfully adopted. Sudana et al. (2003) elucidated the mechanism for photo killing of *E. coli* cells on titanium dioxide (TiO₂) thin film and suggested that the TiO₂ photo catalyst, when placed under visible light radiation generate oxidising substances against microbes and moulds. Wang et al. (2006) observed that the silver-ion-exchanged titanium phosphate films were effective in prohibiting the growth of *E. coli* and, hence were found to be used as antibacterial coatings.

CONCLUSION

From this study it is concluded that silver-titania nano coated metallic blocks possess relatively high antimicrobial activity against the bacterial pathogens tested. Silver-Titania (3%) metallic blocks showed the antimicrobial efficacy of 99.99 % in *S. aureus* tested. Nanosilver (nano Ag) is one of the most effectively used nanomaterials because of its strong antibacterial properties. In comparison with silver ion there is deficient information concerning the biological effects of nano Ag. Nano scale techniques for silver production may assist the resurgence of the medical use of silver, especially given that pathogens showing increasing resistance to antibiotics. Silver nano particles are also considered as candidate for coating medical devices.

ACKNOWLEDGEMENTS

This project was funded by Ministry of Science, Technology and Innovation, Malaysia under sciencefund grant 03-03-02-SF0065.

REFERENCES

