Escherichia fergusonii identified in preputial swabs from healthy Aceh cattle by phylogenetic 16S rRNA analysis

Ummu Balsiqs1, Muhammad Hambal1, Masda Admi1,2, Safika3, Nellita Meutia4, Sugito1, Dasrul1, Mohd. Agus Nashri Abdullah5, T. Reza Ferasyi1, Triva Murtina Lubis1, Mahdi Abrar* and Darmawi**

1Faculty of Veterinary Medicine, Syiah Kuala University, Jl. Tgk. H. Hasan Krueng Kalee No. 4 Darussalam-Banda Aceh, 23111, Indonesia.
3Faculty of Veterinary Medicine, Bogor Agricultural University, Jl. Agatis Dramaga-Bogor, 16680, Indonesia.
4Indrapuri Breeding and Forage Center of Aceh Cattle, Indrapuri District, Banda Aceh, Indonesia.
5Faculty of Agriculture, Syiah Kuala University, Banda Aceh, Indonesia.
Email: darmawi@unsyiah.ac.id

ABSTRACT

Aims: This study aimed to assess the risk of reproductive tract contamination in Aceh cattle by Escherichia fergusonii as revealed by 16S rRNA gene sequencing of preputial swab samples.

Methodology and results: Preputial swabs taken from 50 breeding bulls at the Indrapuri Breeding and Forage Center of Aceh Cattle, Banda Aceh, Indonesia, were examined for the presence of bacteria. Samples were streaked on MacConkey agar and incubated under aerobic conditions at 37°C for 24 h. Smooth, yellow- or rose-colored colonies were selected for their characteristic appearance and subjected to further analysis. Genetic identification was based on 16S rRNA gene sequencing and PCR analysis. We conducted a 16S rRNA sequence similarity search with GenBank using BLAST and constructed neighbour-joining dendrograms using MEGA. From among closely related species of the genus Enterobacteriaceae, we identified the enteric bacterium E. fergusonii as having the highest sequence similarity.

Conclusion, significance and impact of study: We concluded that the E. fergusonii bacterium positively presence in preputial swab samples of clinically healthy Aceh cattle population. Accordingly, it is potentially allowing the bacterium to be spread during natural mating or semen collection processing for artificial insemination in cattle breeding farm.

Keywords: Aceh cattle, Escherichia fergusonii, 16S rRNA gene, sequencing

INTRODUCTION

Aceh cattle are one of the most important domestic cattle breeds in Indonesia, and they occupy an economically prominent position in the livestock industry of many regions. In rural areas, Aceh cattle not only provide meat and milk but also are a principal animal for draft work. Thus, attention must be focused on animal pathogen–caused diseases to ensure that a sufficient supply of Aceh cattle and their products are available. Ultimately, improvement of cattle reproduction may be expected to significantly increase the economy and living standards of many rural communities throughout the world.

Accordingly, we focused our research on pathogenic bacteria that pose a potential risk to animal health by causing widespread disease, particularly in cattle breeding farms. As contagious diseases may affect the reproductive performance of cattle, microbial preputial infections have been a major concern for cattle breeders.

The preputial bacterial load plays a critical role in the transfer of serious disease during the breeding season because this form of transmission may act as a vehicle for a broad range of undesirable pathogens. Bacterial contamination of the preputial orifice by extraneous flora and true pathogens directly from soil, bedding and manure may occur routinely. In support of this hypothesis, several authors have suggested that there may be multiple potential sources for preputial infection owing to the ubiquitous nature of the contributory bacteria (Joshi et al., 2006; Silva et al., 2013; Meena et al., 2015; Rahmi et al., 2015).

The preputial orifice of animals is likely a major source of diverse bacterial species that lead to disease and the risk of microbial spread during the collection of semen destined for use in artificial insemination. Numerous bacterial agents have been isolated worldwide from semen specimens of cattle and other domestic animals. Recently, bacterial organisms such as Micrococcus

*Corresponding author
Escherichia fergusonii, a member of the *Enterobacteriaceae*, is globally distributed and associated with a wide variety of intestinal and extra-intestinal infections in both humans and animals. For example, in a case study from Switzerland, Funke et al. (1993) reported the potential pathogenicity of *E. fergusonii* after they isolated the strain from the feces, gallbladder fluid and a superficial wound of a 69-year-old male patient with pancreatic carcinoma and cholangiosepsis. In a study of patients at an Italian hospital, Savini et al. (2009) described *E. fergusonii* as contributing to the bacterial commensal flora of the human enteric tract. Isolates of *E. fergusonii* were also obtained from farm animals in the United Kingdom (Wragg et al., 2009) and from swine and poultry in South Korea (Rayamaiani et al., 2011). More recently, in Egypt, Gaafer et al. (2015) found *E. fergusonii* to be an emerging bacterial pathogen of freshwater fish and the probable cause of a fatal disease outbreak in Nile tilapia (*Oreochromis niloticus*).

Several investigators have specifically referred to *E. fergusonii* as a potential emerging pathogen. Herràez et al. (2005) reported that *E. fergusonii* infection caused fatal fibrinonecrotic typhlitis in two ostrich specimens (*Struthio camelus*) that had developed clinical signs of hemorrhagic diarrhea, prostration and anorexia. In another case in Canada, a goat developed chronic diarrhea and became emaciated, and *E. fergusonii* was isolated from the feces and several internal organs, namely, kidney, lung, liver and intestine (Harirhan et al. (2007). Recently, in an investigation of non-human primates in Africa, Glover et al. (2017) identified *E. fergusonii* as a possible emerging pathogen of zoonotic importance.

In sum, *E. fergusonii* has been found in many environments, including the aquatic milieu (Maheux et al., 2014), that may potentially allow the bacterium to spread; in this context, *E. fergusonii* poses a substantial risk to veterinary health in cattle breeding farms. For example, a case of *E. fergusonii* infection in a pregnant cow was associated with clinical signs of acute pneumonia, hyperthermia, tachypnea and eventual death (Rimoldi and Moeller Jr., 2013). To avoid contagion, careful evaluation of reproductive tract infection—particularly in the preputial area—is indicated. Therefore, our present investigation was designed to analyze preputial swab samples from clinically healthy Aceh cattle for the presence of *E. fergusonii*. Furthermore, we used genotypic characterization of the bacterial 16S rRNA gene by polymerase chain reaction (PCR) amplification and subsequent phylogenetic analysis to elucidate the taxonomic position of *E. fergusonii* in the *Escherichiaeae* group.

MATERIALS AND METHODS

Specimen collection

Preputial swab samples were obtained under sterile hygienic conditions from 50 healthy Aceh bulls, two to three years of age, maintained at the local breeding center, the Indrapuri Breeding and Forage Center of Aceh Cattle, Indrapuri District, Banda Aceh, Indonesia. The external genitalia of male Aceh cattle were cleaned with sterile gauze moistened with 0.9% sodium chloride. Preputial secretions were collected on sterile cotton swabs, transferred to sterile tubes and kept in boxes at an isothermal temperature of 8 °C and transported to the Laboratory of Research, Faculty of Veterinary Medicine of Syiah Kuala University.

Isolation of preputial bacterium

Samples from preputial swabs were streaked on Petri dishes that contained MacConkey agar (Difco Laboratories, Detroit, MI, USA) and incubated under aerobic conditions at 37 °C for 24 h. Bacteria were isolated and identified as described (Silva et al., 2013). Characteristic smooth, yellow- and rose-colored colonies were selected for further identification. Colonies were restreaked on the same medium to obtain pure cultures. Isolated colonies were identified morphologically by Gram staining (Chai et al., 2017) and by biochemical tests (Bakar et al., 2017). Indole production, methyl red, Voges Proskauer, citrate, sulfur indole motility, mannitol, triple sugar iron agar, sucrose, and glucose tests were carried out.

DNA extraction

Total DNA was extracted separately using the gDNA PrestoTM Bacteria Mini kit (Geneaid) with slight modification. Purified total DNA (50 µL, ~200 µg/mL) was eluted and used as the template for PCR assays as described by Sari et al. (2017).

Amplification of the 16S rRNA gene via PCR

The bacteria-specific primers for the 16S rRNA gene (Baker et al., 2003) used for detecting the preputial
RESULTS

Of 50 bovine preputial specimens analyzed, 9 (18%) yielded bacterial isolates. The bacterium formed smooth, yellow- and rose-colored colonies that were raised and irregularly shaped. Morphologically, the oval bacterium was classified as a Gram-negative rod based on Gram staining. The biochemical reactions of the bacterium are listed in Table 1. Homology analysis (Table 2) revealed that most isolated sequences were closely related to _E. fergusonii_ strain ATCC 35469 with 99% identity to the sequences of the Enterobacteriaceae group available in GenBank. Based on the results of the phylogenetic tree, _E. fergusonii_ was identified as the nearest phylogenetic relative of the bacterium, and we found that a small number of sequences formed a new cluster. The bacterium isolate, 8a, showed the highest similarities with five other enteric bacteria, namely, _Enterobacter massiliensis_, _Citrobacter youngae_ strain, _Escherichia albertii_ strain Albert, _Shigella flexneri_ and _Shigella boydii_. Comparative 16S rRNA gene sequence analysis demonstrated that the bacterium was a member of an RNA group affiliated with the Enterobacteriaceae group. The bacterium was 99% similar to the Enterobacteriaceae group as shown in the phylogenetic tree in Figure 1.

Table 1: Biochemical reactions of _E. fergusonii_ isolated from preputial swabs of Aceh cattle.

<table>
<thead>
<tr>
<th>No.</th>
<th>Test</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indole production</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Methyl red</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Voges Proskauer</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Citrate (Simmons)</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>Sulfur indole motility</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>Mannitol</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>Triple sugar iron agar</td>
<td>Acid/gas</td>
</tr>
<tr>
<td>8</td>
<td>Sucrose</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>Glucose</td>
<td>–</td>
</tr>
</tbody>
</table>

DISCUSSION

The bacterial load in animal reproductive organs is unique, and its complexity may be increased by preputial or vaginal bacteria that may ultimately determine overall animal health. It is therefore advisable to investigate these bacteria to understand the underlying causes of reproductive organ disorders. Each animal appears to harbor a unique bacterial community (Silva et al., 2013; Meena et al., 2015). For example, _C. fetus_, _C. fetus_ subsp. _venerealis_, and _C. fetus_ subsp. _fetus_ were isolated from preputes of buffalo bulls (Joshi et al., 2006). Silva et al. (2013) identified _Staphylococcus intermedius_ and _Proteus mirabilis_, which are aerobic bacterial microbiota that have been most frequently isolated from preputial and vaginal specimens of owl monkeys (_Aotus azarai infulatus_).
Table 2: List of the sequences that showed similarity with the Enterobacteriaceae group.

<table>
<thead>
<tr>
<th>Source of 16S ribosomal RNA gene</th>
<th>Strain</th>
<th>Accession Number</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia fergusonii</td>
<td>ATCC 35469</td>
<td>NR 074902.1</td>
<td>complete</td>
</tr>
<tr>
<td>Escherichia fergusonii</td>
<td>NBRC 102419</td>
<td>NR 114079.1</td>
<td>partial</td>
</tr>
<tr>
<td>Enterobacter massiliensis</td>
<td>JC163</td>
<td>NR 125600.1</td>
<td>partial</td>
</tr>
<tr>
<td>Citrobacter youngae</td>
<td>GTC 1314</td>
<td>NR 041527.1</td>
<td>partial</td>
</tr>
<tr>
<td>Escherichia fergusonii</td>
<td>ATCC 35469</td>
<td>NR 027549.1</td>
<td>partial</td>
</tr>
<tr>
<td>Escherichia albertii</td>
<td>Albert 19982</td>
<td>NR 025569.1</td>
<td>partial</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>ATCC 29903</td>
<td>NR 026331.1</td>
<td>partial</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>U 5/41</td>
<td>NR 024570.1</td>
<td>partial</td>
</tr>
</tbody>
</table>

Values for the following parameters are identical for all sequences: Max Score and Total Score: 754; Query cover: 99%; E value: 0.0; Identity: 99%.

Figure 1: Phylogenetic tree of enteric bacteria constructed using the 16S rRNA gene.

Furthermore, Staphylococcus aureus was detected by Rahmi et al. (2015) in the preputes and vaginas of horses (Equus caballus). Indeed, preputial washing reduces the presence of the bacterial load in the ejaculates of Murrah buffalo bulls (Meena et al., 2015).

Although E. fergusonii is considered a part of bacterial commensal flora in the enteric tract, the bacterium may colonize other organs to become virulent when conditions become conducive for growth and multiplication, which supports its role as an opportunistic pathogenic bacterium. Indeed, it is well known from veterinary reports that, under immunosuppressive conditions, transient microorganisms or resident microbiota that originated from the digestive tract may cause disease in the reproductive tract. For example, many commensal microorganisms are known to infect the reproductive tract and cause conditions like epididymitis, prostatitis, seminal vesiculitis, testicular degeneration, urethral inflammation, ampulitis, posthitis, orchitis and balanitis (Monleon et al., 2008; Lisboa et al., 2009; Rajiah et al., 2012; Altarac, 2015; Delcaru et al., 2016). Notably, these maladies often affect the prepuce and may result in male infertility.

In particular, E. fergusonii may act as pathogens under certain circumstances, and they are cited as responsible for several emerging bacterial diseases in animals and humans (Funke et al., 1993; Savini et al., 2009). We describe herein that the preputial colonization
of cattle by potential emerging opportunistic veterinary- and human-pathogenic bacteria such as E. fergusonii may result in the contamination from the environment. This phenomenon can cause serious and even fatal infections in otherwise healthy hosts. Rimoldi and Moeller Jr. (2013) described that E. fergusonii may function as a fatal pulmonary pathogen and cause acute pneumonia, leading to death in cattle. Previously, Weis et al. (2011) observed a similar phenomenon in the horse with E. fergusonii possibly emerging as an opportunistic pathogen that caused enteritis and septicaemia. In the chicken, Oh et al. (2012) found that E. fergusonii produced heat-labile enterotoxin. Moreover, Gokhale et al. (2014) reported that E. fergusonii caused a chronic low-grade endophthalmitis after cataract surgery. In the aquatic environment, Gaafar et al. (2015) reported that E. fergusonii caused pathological lesions, mortality and morbidity in tilapia.

Infection with E. fergusonii increases not only the risk of disease but also the associated phenomenon of increased resistance to antibiotics both in humans and animals. Lagacé-Wiens et al. (2010) isolated E. fergusonii from urine samples of a patient with cystitis, and their analyses demonstrated a high level of bacterial multidrug resistance to cephalosporins, fluoroquinolones, sulfonamides, monobactams and aminopenicillins. This result was similar to previous findings by Savini et al. (2008) of multidrug resistance of E. fergusonii recovered from a patient with clinical signs of acute cystitis. Ramayaji et al. (2011) described the prevalence of β-lactam resistance of E. fergusonii in swine and poultry. Multidrug-resistant and virulent E. fergusonii were also detected by Forgetta et al. (2012), who demonstrated the presence of antibiotic resistance genes in chromosomes and plasmids of E. fergusonii isolated from broiler chickens. In light of the available data, we argue that the resistance of E. fergusonii to multiple classes of antibiotics has undoubtedly resulted in treatment failures and prolonged illnesses and a higher risk of invasive disease.

Various bacteria have now been recognized as important emerging pathogens in the reproductive tract, and several have been demonstrated to cause disease in both humans (Lisboa et al., 2009; Rajiah et al., 2012; Altarac, 2015; Delcaru et al., 2016) and animals (Monleon et al., 2008; Oh et al., 2012; Rana et al., 2012). In humans, various types of infections related to balanitis and infectious balanoposthitis have been reported in circumcised or uncircumcised males (Lisboa et al., 2009; Rajiah et al., 2012). Escherichia coli is able to adhere to and colonize the perineum and urethra and cause urinary tract infections (Altarac, 2015). Delcaru et al. (2016) described that bacterial biofilm formation, which is commonly caused by Gram-negative bacteria, can lead to urinary tract infection and prostatitis syndromes. In animals, Monleon et al. (2008) found that both Staphylococcus aureus and E. coli have been implicated as causes of orchitis and epididymo-orchitis in poultry breeder breeders. Enterobacter spp., a recognized cause of coliform mastitis in neonatal and calf diarrhea, was recovered by Rana et al. (2012) in fresh bubaline semen.

An increasing preputial bacterial load leads to contamination that affects semen quality as manifested by toxic effects on spermatozoa. Bacteriospermia in semen can lead to changes in the integrity and viability of spermatozoa and affect fertilization by direct adherence of the bacteria to individual sperm cells. Bacteria may also have indirect effects in semen. For example, Morrell (2006) described that toxins released by bacteria can impair spermatozoa motility. Thus, preputial hygiene is a primary consideration in the prevention of pathogenic bacterial transmission through artificial insemination or natural mating conditions. Because the majority of bacteria present in semen come from the prepuce, Joshi et al. (2006) advised that, during semen-collecting procedures, bull preputial cavities be systematically cleaned.

ACKNOWLEDGEMENTS

We wish to thank the technical staff of the Research Laboratory Faculty of Veterinary Medicine for their assistance. We also thank Mr. S. F. Santosa for expert technical help in preparation of materials. We are thankful to the Research and Community Service of Syiah Kuala University for funding of the grant awarded by the Hibah Penelitian Unggul Unsyiah (No. 76/UN11.2/PP/PNBP/SP3/2017).

REFERENCES

Enterobacteriaceae isolates from South Korean farm animals. Applied and Environmental Microbiology 77, 3163-3166.

